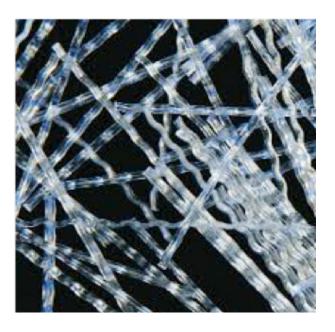


MACRO-SYNTHETIC FIBRES

PRODUCT DESCRIPTION


Enduro HPP50 Macro-Synthetic fibres are designed as an alternative to traditional reo in the reinforcement of concrete. The fibres have an engineered contoured profile which acts to anchor the fibres into the concrete therefore reducing the potential for matrix pull-out. This design of fibre has a feature that allows for a much higher-dosage level, which results in a performance level far beyond those achieved with traditional reinforcement.

BENEFITS

- Geometric engineered to avoid matrix pullout
- An increase in flexural toughness
- Reduces segregation
- Rustproof
- Non-magnetic
- Safe and very easy to handle
- Chemically inactive
- Increases impact and shatter resistance
- Simplified logistics
- Economic alternative to traditional reo

AREAS OF APPLICATION

- Pavements
- Roads
- Pre-cast panels
- Breakwalls and other sea defence infrastructure
- Airport runways

APPLICATION

The required dose per cubic metre should be added to the mix after batching. Following the addition of fibres to the batch, the concrete should be mixed for a minimum of five additional minutes as to ensure the equal distribution of fibres through concrete mix.

The dosage rate of fibres will vary depending on engineering specifications. Typically, fibre dosage will range from 4kg to 9kg per cubic metre of concrete.

Macro-fibre reinforced concrete can be pumped, sprayed or placed using conventional equipment.

MACRO-SYNTHETIC FIBRES

PHYSICAL AND CHEMICAL PROPERTIES

Fibre length	50mm	Salt and Acid Resistance	High
Type/Shape	Macro/Monofilament	Melt Point	164°C
Immersion of Liquid/ Water	Zero	Temperature Ignition Point	>550°C
Precise Gravity	0.91	Thermal Conductivity	Low
Electrical Conductivity	Low	Alkali Resistance	Alkali Proof